Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Angew Chem Int Ed Engl ; : e202305536, 2023 Jun 06.
Article in English | MEDLINE | ID: covidwho-20238605

ABSTRACT

The trans-cleavage property of CRISPR-Cas12a system makes it an excellent tool for disease diagnosis. Nevertheless, most methods based on CRISPR-Cas system still require pre-amplification of the target to achieve the desired detection sensitivity. Here we generate Framework-Hotspot reporters (FHRs) with different local densities to investigate their effect on trans-cleavage activity of Cas12a. We find that the cleavage efficiency increases and the cleavage rate accelerates with increasing reporter density. We further construct a modular sensing platform with CRISPR-Cas12a-based target recognition and FHR-based signal transduction. Encouragingly, this modular platform enables sensitive (100 fM) and rapid (<15 min) detection of pathogen nucleic acids without pre-amplification, as well as detection of tumor protein markers in clinical samples. The design provides a facile strategy for enhanced trans cleavage of Cas12a, which accelerates and broadens its applications in biosensing.

2.
Anal Chim Acta ; 1251: 340998, 2023 Apr 22.
Article in English | MEDLINE | ID: covidwho-20230777

ABSTRACT

Non-specific amplification is a major problem in nucleic acid amplification resulting in false-positive results, especially for exponential amplification reactions (EXPAR). Although efforts were made to suppress the influence of non-specific amplification, such as chemical blocking of the template's 3'-ends and sequence-independent weakening of template-template interactions, it is still a common problem in many conventional EXPAR reactions. In this study, we propose a novel strategy to eliminate the non-specific signal from non-specific amplification by integrating the CRISPR-Cas12a system into two-templates EXPAR. An EXPAR-Cas12a strategy named EXPCas was developed, where the Cas12a system acted as a filter to filter out non-specific amplificons in EXPAR, suppressing and eliminating the influence of non-specific amplification. As a result, the signal-to-background ratio was improved from 1.3 to 15.4 using this method. With microRNA-21 (miRNA-21) as a target, the detection can be finished in 40 min with a LOD of 103 fM and no non-specific amplification was observed.


Subject(s)
CRISPR-Cas Systems , Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods
3.
Karbala International Journal of Modern Science ; 9(2):187-196, 2023.
Article in English | Scopus | ID: covidwho-2326000

ABSTRACT

In this long-term storage study, we optimized the lyophilization conditions of each reaction stage of a nucleic acid-based assay for SARS-CoV-2 detection. The stability testing demonstrated that the dried reactions from all 3 steps (cDNA synthesis, isothermal amplification and detection) can be kept at ¡20 °C or 4 °C for up to 6 or 3 months, respectively, whereas, if stored at 25 °C or 37 °C, the reagents only could be stored for a few days without quality loss. This suggests that we can have the dried reactions at ¡20 °C for long-term storage until needed. Moreover, this assay is now simpler to perform as each of the 3 steps now proceeds with pre-mixed regents lyophilized in a single tube for each step. © 2023 University of Kerbala. All rights reserved.

4.
Biosens Bioelectron ; 225: 115102, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2311842

ABSTRACT

Growing studies focusing on nuclear acid detection via the emerging CRISPR technique demonstrate its promising application. However, limited works solve the identification of non-nucleic acid targets, especially multiple small molecules. To address challenges for point-of-care testing (POCT) in complex matrices for healthcare, environment, and food safety, we developed CRISPR Cas12a-powered highly sensitive, high throughput, intelligent POCT (iPOCT) for multiple small molecules based on a smartphone-controlled reader. As a proof of concept, aflatoxin B1 (AFB1), benzo[a]pyrene (BaP), and capsaicin (CAP) were chosen as multiple targets. First, three antigens were preloaded in independent microwells. Then, the antibody/antigen-induced fluorescent signals were consecutively transferred from the biotin-streptavidin to CRISPR/Cas12a system. Third, the fluorescent signals were recorded by a smartphone-controlled handheld dark-box readout. Under optimization, detection limits in AFB1, BaP, and CAP were 0.00257, 4.971, and 794.6 fg/mL with wide linear ranges up to four orders of magnitude. Using urine, water, soybean oil, wheat, and peanuts as the complex matrix, we recorded high selectivity, considerable recovery, repeatability, and high consistency comparison to HPLC-MS/MS methods. This work promises a practical intelligent POCT platform for multiple targets in lipid-soluble and water-soluble matrices and could be extensively applied for healthcare, environment, and food safety.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Tandem Mass Spectrometry , Aflatoxin B1 , Capsaicin , Coloring Agents , Point-of-Care Testing , Delivery of Health Care
5.
Angew Chem Int Ed Engl ; 62(23): e202300663, 2023 06 05.
Article in English | MEDLINE | ID: covidwho-2308962

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR) system is a promising platform for nucleic acid detection. Regulating the CRISPR reaction would be extremely useful to improve the detection efficiency and speed of CRISPR diagnostic applications. Here, we have developed a light-start CRISPR-Cas12a reaction by employing caged CRISPR RNA (crRNA). When combined with recombinase polymerase amplification, a robust photocontrolled one-pot assay is achieved. The photocontrolled one-pot assay is simpler and is 50-fold more sensitive than the conventional assay. This improved detection efficiency also facilitates the development of a faster CRISPR diagnostic method. The detection of clinical samples demonstrated that 10-20 min is sufficient for effective detection, which is much faster than the current gold-standard technique PCR. We expect this advance in CRISPR diagnostics to promote its widespread detection applications in biomedicine, agriculture, and food safety.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Agriculture , Biological Assay , Nucleotidyltransferases , Nucleic Acid Amplification Techniques
6.
Small ; : e2207343, 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2307426

ABSTRACT

Drug resistance in pathogenic bacteria has become a major threat to global health. The misuse of antibiotics has increased the number of resistant bacteria in the absence of rapid, accurate, and cost-effective diagnostic tools. Here, an amplification-free CRISPR-Cas12a time-resolved fluorescence immunochromatographic assay (AFC-TRFIA) is used to detect drug-resistant Salmonella. Multi-locus targeting in combination crRNA (CcrRNA) is 27-fold more sensitive than a standalone crRNA system. The lyophilized CRISPR system further simplifies the operation and enables one-pot detection. Induction of nucleic acid fixation via differentially charged interactions reduced the time and cost required for flowmetric chromatography with enhanced stability. The induction of nucleic acid fixation via differentially charged interactions reduces the time and cost required for flowmetric chromatography with enhanced stability. The platform developed for the detection of drug-resistant Salmonella has an ultra-sensitive detection limit of 84 CFU mL-1 within 30 min, with good linearity in the range of 102 -106 CFU mL-1 . In real-world applications, spiked recoveries range from 76.22% to 145.91%, with a coefficient of variation less than 10.59%. AFC-TRFIA offers a cost-effective, sensitive, and virtually equipment-independent platform for preventing foodborne illnesses, screening for drug-resistant Salmonella, and guiding clinical use.

7.
Biosensors (Basel) ; 12(1)2021 Dec 26.
Article in English | MEDLINE | ID: covidwho-2287828

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led to a global pandemic with a high spread rate and pathogenicity. Thus, with limited testing solutions, it is imperative to develop early-stage diagnostics for rapid and accurate detection of SARS-CoV-2 to contain the rapid transmission of the ongoing COVID-19 pandemic. In this regard, there remains little knowledge about the integration of the CRISPR collateral cleavage mechanism in the lateral flow assay and fluorophotometer. In the current study, we demonstrate a CRISPR/Cas12a-based collateral cleavage method for COVID-19 diagnosis using the Cas12a/crRNA complex for target recognition, reverse transcription loop-mediated isothermal amplification (RT-LAMP) for sensitivity enhancement, and a novel DNA capture probe-based lateral flow strip (LFS) or real-time fluorescence detector as the parallel system readout facility, termed CRICOLAP. Our novel approach uses a customized reporter that hybridizes an optimized complementary capture probe fixed at the test line for naked-eye result readout. The CRICOLAP system achieved ultra-sensitivity of 1 copy/µL in ~32 min by portable real-time fluorescence detection and ~60 min by LFS. Furthermore, CRICOLAP validation using 60 clinical nasopharyngeal samples previously verified with a commercial RT-PCR kit showed 97.5% and 100% sensitivity for S and N genes, respectively, and 100% specificity for both genes of SARS-CoV-2. CRICOLAP advances the CRISPR/Cas12a collateral cleavage result readout in the lateral flow assay and fluorophotometer, and it can be an alternative method for the decentralized field-deployable diagnosis of COVID-19 in remote and limited-resource locations.


Subject(s)
COVID-19 Testing , COVID-19 , CRISPR-Cas Systems , COVID-19/diagnosis , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , Sensitivity and Specificity
8.
Adv Biomark Sci Technol ; 2: 1-23, 2020.
Article in English | MEDLINE | ID: covidwho-2288563

ABSTRACT

Due to the unprecedented public health crisis caused by COVID-19, our first contribution to the newly launching journal, Advances in Biomarker Sciences and Technology, has abruptly diverted to focus on the current pandemic. As the number of new COVID-19 cases and deaths continue to rise steadily around the world, the common goal of healthcare providers, scientists, and government officials worldwide has been to identify the best way to detect the novel coronavirus, named SARS-CoV-2, and to treat the viral infection - COVID-19. Accurate detection, timely diagnosis, effective treatment, and future prevention are the vital keys to management of COVID-19, and can help curb the viral spread. Traditionally, biomarkers play a pivotal role in the early detection of disease etiology, diagnosis, treatment and prognosis. To assist myriad ongoing investigations and innovations, we developed this current article to overview known and emerging biomarkers for SARS-CoV-2 detection, COVID-19 diagnostics, treatment and prognosis, and ongoing work to identify and develop more biomarkers for new drugs and vaccines. Moreover, biomarkers of socio-psychological stress, the high-technology quest for new virtual drug screening, and digital applications are described.

9.
Biosens Bioelectron ; 228: 115179, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2289069

ABSTRACT

Rapid, sensitive, and one-pot diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an extremely important role in point-of-care testing (POCT). Herein, we report an ultra-sensitive and rapid one-pot enzyme-catalyzed rolling circle amplification-assisted CRISPR/FnCas12a assay, termed OPERATOR. OPERATOR employs a single well-designed single-strand padlock DNA, containing a protospacer adjacent motif (PAM) site and a sequence complementary to the target RNA which procedure converts and amplifies genomic RNA to DNA by RNA-templated DNA ligation and multiply-primed rolling circle amplification (MRCA). The MRCA amplicon of single-stranded DNA is cleaved by the FnCas12a/crRNA complex and detected via a fluorescence reader or lateral flow strip. OPERATOR presents outstanding advantages including ultra-sensitivity (1.625 copies per reaction), high specificity (100%), rapid reaction speed (∼30 min), easy operation, low cost, and on-spot visualization. Furthermore, we established a POCT platform by combining OPERATOR with rapid RNA release and a lateral flow strip without professional equipment. The high performance of OPERATOR in SARS-CoV-2 tests was confirmed using both reference materials and clinical samples, and the results suggest that is readily adaptable for point-of-care testing of other RNA viruses.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , CRISPR-Cas Systems/genetics , Biosensing Techniques/methods , Nucleic Acid Amplification Techniques/methods , DNA , RNA
10.
Microbiol Spectr ; : e0326022, 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2287509

ABSTRACT

The continuous and rapid surge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with high transmissibility and evading neutralization is alarming, necessitating expeditious detection of the variants concerned. Here, we report the development of rapid SARS-CoV-2 variants enzymatic detection (SAVED) based on CRISPR-Cas12a targeting of previously crucial variants, including Alpha, Beta, Gamma, Delta, Lambda, Mu, Kappa, and currently circulating variant of concern (VOC) Omicron and its subvariants BA.1, BA.2, BA.3, BA.4, and BA.5. SAVED is inexpensive (US$3.23 per reaction) and instrument-free. SAVED results can be read out by fluorescence reader and tube visualization under UV/blue light, and it is stable for 1 h, enabling high-throughput screening and point-of-care testing. We validated SAVED performance on clinical samples with 100% specificity in all samples and 100% sensitivity for the current pandemic Omicron variant samples having a threshold cycle (CT) value of ≤34.9. We utilized chimeric CRISPR RNA (crRNA) and short crRNA (15-nucleotide [nt] to 17-nt spacer) to achieve single nucleotide polymorphism (SNP) genotyping, which is necessary for variant differentiation and is a challenge to accomplish using CRISPR-Cas12a technology. We propose a scheme that can be used for discriminating variants effortlessly and allows for modifications to incorporate newer upcoming variants as the mutation site of these variants may reappear in future variants. IMPORTANCE Rapid differentiation and detection tests that can directly identify SARS-CoV-2 variants must be developed in order to meet the demands of public health or clinical decisions. This will allow for the prompt treatment or isolation of infected people and the implementation of various quarantine measures for those exposed. We report the development of the rapid SARS-CoV-2 variants enzymatic detection (SAVED) method based on CRISPR-Cas12a that targets previously significant variants like Alpha, Beta, Gamma, Delta, Lambda, Mu, and Kappa as well as the VOC Omicron and its subvariants BA.1, BA.2, BA.3, BA.4, and BA.5 that are currently circulating. SAVED uses no sophisticated instruments and is reasonably priced ($3.23 per reaction). As the mutation location of these variations may reoccur in subsequent variants, we offer a system that can be applied for variant discrimination with ease and allows for adjustments to integrate newer incoming variants.

11.
Anal Chim Acta ; 1221: 340120, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-2287040

ABSTRACT

Early and accurate diagnosis of SARS-CoV-2 was crucial for COVID-19 control and urgently required ultra-sensitive and rapid detection methods. CRISPR-based detection systems have great potential for rapid SARS-CoV-2 detection, but detecting ultra-low viral loads remains technically challenging. Here, we report an ultrasensitive CRISPR/Cas12a-based electrochemical detection system with an electrochemical biosensor, dubbed CRISPR-SPCE, in which the CRISPR ssDNA reporter was immobilized onto a screen-printed carbon electrode. Electrochemical signals are detected due to CRISPR cleavage, giving enhanced detection sensitivity. CRISPR-SPCE enables ultrasensitive SARS-CoV-2 detection, reaching as few as 0.27 copies µL-1. Moreover, CRISPR-SPCE is also highly specific and inexpensive, providing a fast and simple SARS-CoV-2 assay.


Subject(s)
Biosensing Techniques , COVID-19 , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19 Testing , Carbon , Electrodes , Humans , SARS-CoV-2/genetics , Sensitivity and Specificity
12.
Anal Chim Acta ; 1248: 340938, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2242732

ABSTRACT

CRISPR-Cas12a (Cpf1) is widely used for pathogen detection. However, most Cas12a nucleic acid detection methods are limited by a PAM sequence requirement. Moreover, preamplification and Cas12a cleavage are separate. Here, we developed a one-step RPA-CRISPR detection (ORCD) system unrestricted by the PAM sequence with high sensitivity and specificity that offers one-tube, rapid, and visually observable detection of nucleic acids. In this system, Cas12a detection and RPA amplification are performed simultaneously, without separate preamplification and product transfer steps, and 0.2 copies/µL of DNA and 0.4 copies/µL of RNA can be detected. In the ORCD system, the activity of Cas12a is the key to the nucleic acid detection; specifically, reducing Cas12a activity increases the sensitivity of ORCD assay detection of the PAM target. Furthermore, by combining this detection technique with a nucleic acid extraction-free method, our ORCD system can be used to extract, amplify and detect samples within 30 min, as verified with tests of 82 Bordetella pertussis clinical samples with a sensitivity and specificity of 97.30% and 100% compared with PCR. We also tested 13 SARS-CoV-2 samples with RT-ORCD, and the results were consistent with RT-PCR.


Subject(s)
COVID-19 , Nucleic Acids , Humans , SARS-CoV-2 , RNA , Biological Assay , Nucleic Acid Amplification Techniques
13.
Adv Sci (Weinh) ; : e2204689, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2241557

ABSTRACT

Most multiplex nucleic acids detection methods require numerous reagents and high-priced instruments. The emerging clustered regularly interspaced short palindromic repeats (CRISPR)/Cas has been regarded as a promising point-of-care (POC) strategy for nucleic acids detection. However, how to achieve CRISPR/Cas multiplex biosensing remains a challenge. Here, an affordable means termed CRISPR-RDB (CRISPR-based reverse dot blot) for multiplex target detection in parallel, which possesses the advantages of high sensitivity and specificity, cost-effectiveness, instrument-free, ease to use, and visualization is reported. CRISPR-RDB integrates the trans-cleavage activity of CRISPR-Cas12a with a commercial RDB technique. It utilizes different Cas12a-crRNA complexes to separately identify multiple targets in one sample and converts targeted information into colorimetric signals on a piece of accessible nylon membrane that attaches corresponding specific-oligonucleotide probes. It has demonstrated that the versatility of CRISPR-RDB by constructing a four-channel system to simultaneously detect influenza A, influenza B, respiratory syncytial virus, and SARS-CoV-2. With a simple modification of crRNAs, the CRISPR-RDB can be modified to detect human papillomavirus, saving two-thirds of the time compared to a commercial PCR-RDB kit. Further, a user-friendly microchip system for convenient use, as well as a smartphone app for signal interpretation, is engineered. CRISPR-RDB represents a desirable option for multiplexed biosensing and on-site diagnosis.

14.
Front Microbiol ; 13: 1070831, 2022.
Article in English | MEDLINE | ID: covidwho-2237151

ABSTRACT

The coronavirus disease 2019 (COVID-19) caused by novel severe acute respiratory coronavirus 2 (SARS-CoV-2) has been rapidly spreading worldwide. Rapid and widespread testing is essential to promote early intervention and curb the ongoing COVID-19 pandemic. Current gold standard reverse transcription-polymerase chain reaction (RT-PCR) for detecting SARS-CoV-2 is restricted to professional laboratories and well-trained personnel, thus, limiting its widespread use in resource-limited conditions. To overcome these challenges, we developed a rapid and convenient assay using a versatile integrated tube for the rapid and visual detection of SARS-CoV-2. The reaction conditions of the method were optimized using SARS-CoV-2 RNA standards and the sensitivity and specificity were further determined. Finally, it was verified on clinical specimens. The assay was completed within 40 min, and the result was visible by the naked eye. The limits of detection (LODs) for the target ORF1ab and N genes were 50 copies/µl. No cross-reactivity was observed with the RNA standard samples of four respiratory viruses or clinical samples of common respiratory viral infections. Ninety SARS-CoV-2 positive and 30 SARS-CoV-2 negative patient specimens were analyzed. We compared these results to both prior and concurrent RT-PCR evaluations. As a result, the overall sensitivity and specificity for detection SARS-CoV-2 were 94.5 and 100.0%, respectively. Conclusion: The integrated tube assay has the potential to provide a simple, specific, sensitive, one-pot, and single-step assay for SARS-CoV-2.

15.
Talanta ; 256: 124312, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2221395

ABSTRACT

The CRISPR/Cas systems have provided wide biosensing applications. Particularly, the aptamer-involved CRISPR/Cas sensor system powerfully expanded to non-nucleic-acid targets. However, tailoring the sequence of the aptamer to explore the relationship between affinity and the activation of CRISPR/Cas12a trans-cleavage activity has not been reported yet. Herein, we developed a series of new aptamers toward the spike protein 1(S1) of SARS-CoV-2. Surface plasmon resonance measurements showed that the affinity of these aptamers to S1 was at the nM level. Subsequently, a "SET" effect (Sequence Essential Trans-cleavage activity) is discovered for the activation of CRISPR/Cas12a trans-cleavage activity. That is, an aptamer, as the activator, sequence needs to be tailored to activate CRISPR/Cas12a efficiently. A balance should be reached between affinity and activation ability. On the one hand, high affinity ensures target recognition performance, and on the other hand, activation can achieve adequate amplification and output of recognition signals. The optimized sequence (with 27 nucleotides, for short 27-nt) not only recognizes the target with a high affinity and specificity but also can trigger the CRISPR/Cas12a trans-cleavage activity efficiently, showing an excellent detection performance in electrochemical biosensors. The detection limit for SARS-CoV-2 S1 can be low at 1.5 pg mL-1. The new CRISPR/Cas12a-derived aptasensor also displays a remarkable ability to detect Beta, Delta, and Omicron variants but is selective toward other kinds of proteins. Above all, it is robust for point-of-care testing (POCT) in complex biological fluids, such as saliva, urine, and serum, and provides a universal and scalable detecting platform. Our results provide new insights into aptamer development and a different strategy for COVID-19 antigen detection and biosensor development.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , COVID-19/diagnosis , CRISPR-Cas Systems , SARS-CoV-2/genetics , Oligonucleotides , Surface Plasmon Resonance
16.
Front Microbiol ; 13: 1070940, 2022.
Article in English | MEDLINE | ID: covidwho-2224831

ABSTRACT

Previous studies have highlighted CRISPR-based nucleic acid detection as rapid and sensitive diagnostic methods for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we reported an optimized CRISPR-Cas12a diagnostic platform for the safe and rapid detection of SARS-CoV-2 variants of concern (VOCs). This platform, which was referred to as CALIBURN-v2, could complete the diagnosis on extracted RNA samples within 25 min in a closed-lid reaction mode and had 100-fold increase in detection sensitivity in comparison with previous platforms. Most importantly, by integrating a portable device and smartphone user interface, CALIBURN-v2 allowed for cloud server-based data collection and management, thus transforming the point-of-care testing (POCT) platform to internet of medical things (IoMT) applications. It was found that IoMT-enabled CALIBURN-v2 could achieve 95.56% (172 out of 180) sensitivity for SARS-CoV-2 wild type and 94.38% (84 out of 89) overall sensitivity for SARS-CoV-2 variants including Delta and Omicron strains. Therefore, our study provides a feasible approach for IoMT-enabled CRISPR diagnostics for the detection of SARS-CoV-2 VOCs.

17.
Anal Biochem ; 664: 115046, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2175673

ABSTRACT

The early diagnosis of coronavirus disease 2019 (COVID-19) is dependent on the specific and sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. Herein, we develop a highly sensitive and specific electrochemical biosensor for SARS-CoV-2 target RNA detection based on the integration of protospacer adjacent motif (PAM)-free cascaded toehold-mediated strand displacement reaction (TSDR) and CRISPR-Cas12a (PfTSDR-CRISPR). In this study, each target is transformed into multiple DNA substrates with bubble structure in the seed region by the cascaded TSDR, which can directly hybridize with guide RNA (gRNA) without PAM requirement and then activate CRISPR-Cas12a's trans-cleavage activity. Subsequently, the hairpin DNA modified with methylene blue (MB-HP) is cleaved by activated CRISPR-Cas12a. Therefore, as MB leaves the electrode surface, a decreased current signal is obtained. With the involvement of PAM-free cascaded TSDRs and CRISPR-Cas12a amplification strategy, the PfTSDR-CRISPR-based electrochemical biosensor achieves the detection of target RNA as low as 40 aM. The biosensor has high sequence specificity, reliability and robustness. Thanks to the PAM-free cascaded TSDR, the biosensor can achieve universal detection of different target RNA without redesigning gRNA sequence of CRISPR-Cas12a. In addition, this biosensor successfully detects SARS-CoV-2 target RNA in complex samples, which highlights its potential for diagnosing COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , COVID-19/diagnosis , CRISPR-Cas Systems/genetics , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2/genetics , RNA, Guide, Kinetoplastida/genetics
18.
Biosensors (Basel) ; 13(1)2023 Jan 14.
Article in English | MEDLINE | ID: covidwho-2199768

ABSTRACT

Given the possibility that food contaminated with SARS-CoV-2 might become an infection source, there is an urgent need for us to develop a rapid and accurate nucleic acid detection method for SARS-CoV-2 in food to ensure food safety. Here, we propose a sensitive, specific, and reliable molecular detection method for SARS-CoV-2. It has a mechanism to control amplicon contamination. Swabs from spiked frozen shrimps were used as detection samples, which were processed by heating at 95 °C for 30 s. These preprocessed samples served as the templates for subsequent amplification. A colorimetric LAMP reaction was carried out to amplify both the SARS-CoV-2 target and the MS2 phage simultaneously in one tube. MS2 phage was detected by colorimetric LAMP as the internal control, while SARS-CoV-2 was detected with a CRISPR/Cas12a system. The fluorescence results could be visually detected with an ultraviolet lamp. Meanwhile, uracil was incorporated during the LAMP reaction to provide an amplicon contamination proof mechanism. This test could detect as low as 20 copies of SARS-CoV-2 in one reaction. Additionally, the detection could be finished in 45 min. The test only needs a heating block and an ultraviolet lamp, which shows the potential for field detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , CRISPR-Cas Systems , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
19.
Anal Chim Acta ; 1242: 340812, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2164922

ABSTRACT

Currently, the coronavirus disease 2019 (COVID-19) caused by the outbreak of a novel coronavirus (SARS-CoV-2) is spreading rapidly worldwide. Due to the high incidence of influenza coinciding with SARS-CoV-2, rapid detection is crucial to prevent spreading. Here, we present an integrated dual-layer microfluidic platform for specific and highly sensitive SARS-CoV-2, influenza viruses A (FluA) H1N1, H3N2, and influenza virus B (FluB) simultaneous detection. The platform includes a dual microchip (Dµchip) and a portable detection device for real-time fluorescence detection, temperature control and online communication. The Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP) and Cas12a cleavage were performed on the Dµchip. The limit of detection (LoD) of the Dµchip assay was 10 copies for SARS-CoV-2, FluA H1N1, H3N2, and FluB RNAs. The Dµchip assay yielded no cross-reactivity against other coronaviruses, so it was suitable for the screening of multiple viruses. Moreover, the positive percentage agreement (PPA) and negative percentage agreement (NPA) of the assay were 97.9% and 100%, respectively, in 75 clinical samples compared to data from RT-PCR-based assays. Furthermore, the assay allowed the detection SARS-CoV-2 and influenza viruses in spiked samples. Overall, the present platform would provide a rapid method for the screening of multiple viruses in hospital emergency, community and primary care settings and facilitate the remote diagnosis and outbreak control of the COVID-19.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Humans , COVID-19/diagnosis , SARS-CoV-2 , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Microfluidics , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity , RNA, Viral
20.
Zhongguo Jiguang/Chinese Journal of Lasers ; 49(15), 2022.
Article in Chinese | Scopus | ID: covidwho-2143870

ABSTRACT

Objective Clustered regularly interspaced short palindromic repeats (CRISPR) has shown significant promise as an emerging nucleic acid detection technology. However, it still requires improvement in terms of sensitivity, detection automation, and anti-pollution. Furthermore, CRISPR technology lacks simple and portable professional equipment to meet the high demand of rapid point-of-care testing. Therefore, this study proposes a CRISPR/Cas12a detection reaction system for SARS-CoV-2. This detection response system and innovative tube-in-tube consumables aid in developing a portable compact device for simultaneous automatic detection of several samples and a coaxial fiber-based fluorescence detection system. Finally, we developed a single-sample user-friendly nucleic acid detection APP based on smartphone recognition and detection results for the manual detection mode. Methods The target in this study was severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which was detected using the CRISPR method and enhanced via the reverse transcription-recombinase polymerase amplification (RT-RPA) technique;the feasibility was assessed using the reverse transcription-polymerase chain reaction (RT-PCR) amplification method in the early stages. Various companies customized the required reagents and the designed sequences. In the detection process, first, with the tube-in-tube consumables developed by our team in the early stage, which comprised the reaction outer and inner tubes, the amplification reagents and detection reagents were loaded into the inner and outer tubes, respectively. The temperature was regulated to 37-42 ℃ to complete the amplification. The reagents in the inner and outer tubes were then mixed by shaking or centrifugation, and the temperature was adjusted to complete the CRISPR reaction. Finally, it was possible to observe if there was any fluorescence occurrence under the illumination of a blue light. The detection instrument was composed of an optical cassette and a base, and automatic detection was realized through a printed circuit board (PCB), a human-computer interaction display screen, etc. In addition, this study also used the fluorescence image recognition algorithm to process the detection images, compared with the international standard polymerase chain reaction (PCR) technology to explore the detection limit, and increased the target types to test the specificity strength. Results and Discussions The lower part of the detection instrument designed by our team integrates the printed circuit board and the human-computer interaction display screen. In the automatic detection mode, the fluorescence recognition circuit was designed with the help of a 470 nm light-emitting diode (LED), an optical filter, a complementary metal oxide semiconductor (CMOS) camera, a collimating lens, and a coaxial fiber. At the same time, the specificity of the theoretical experiment was verified through comparative experiments on several different targets. In addition, to verify the accuracy of this method for detecting actual samples, we compared each actual sample through PCR detection and the method based on the combination of RT-RPA and CRISPR proposed in this study. The detection results showed that the two were perfectly consistent. Conclusions The current study proposed a CRISPR/Cas12a-based anti-pollution portable nucleic acid detection technique. Furthermore, a simple model was proposed based on the naked eye or smartphone to recognize results;additionally, a downsized portable device based on fluorescence detection that can simultaneously detect numerous samples was constructed. The portable device can detect numerous samples simultaneously, and it has a constant heating mechanism and fluorescence stimulation detection optical channel to enhance the detection system’s accuracy and stability. The nucleic acid of SARS-CoV-2 was verified using the proposed method and detection system. The minimum detection limit was <10 copy/μL. The test findings of our method had a good consistency with that of real- ime fluorescence quantitative PCR method, but our method took less than half the time consuming of the PCR method, and the whole detection process could be finished in 32 min. The method and technology developed in this study propose a novel approach for nucleic acid detection at health-care center and home. © 2022 Science Press. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL